Dataflow-based Control Process Identification for ICS Dataset Development

2022. 8. 8.

Seungoh Choi, Hyeok-Ki Shin, Woomyo Lee, Jeong-Han Yun, and Byung-Gil Min
Ⅰ | Motivation

Ⅱ | Background
 • General control process

Ⅲ | Proposed method
 • Gathering control process information
 • Graph generation

Ⅳ | Case study
 • Graph Generation of Boiler Control System
 • Normal and Attack Scenario Generation
 • Attack Impact and Root Cause Analysis

Ⅴ | Conclusion
Developing a dataset for security research in industrial control systems (ICSs)

Previous work

ICS Testbed

- The picture can't be displayed.

ICS Dataset

- The picture can't be displayed.

Problems

Biased samples

The representativeness of the control and physical dynamics of the process control system (PCS) is limited.

Poor data annotation

Accurately classifying all the affected tags by manually identifying all dependencies on the control logic and physical connectivity is limited.

Ongoing work

Casuality in entire PCS

Generating scenario + Labelling data

ICS Dataset
Three restrictions to identify a causality of PCS

- **Limited accessibility**: Restrictions on access the control devices during operation
- **Tangled low-level logic**: Practically impossible for a human to utilize a large amount of sequential logic
- **High vendor dependency**: Difference in the control logic expression language from vendors

Available dedicated database + Data flow graph (DFG)

Identifying dataflow-based control process for ICS dataset development
General control process

- **Digital subsystem**
 Management and operation systems: EWS, OWS(HMI), controller (DCS, PLC)
 Variables: SP, Mode, CP, PV, CO

- **Physical subsystem**
 Field devices: actuators (pumps, control valves) and sensors (transmitters)
 Variables: MV, PV
Gathering control process information

- Tag-related information
 Tags: Names assigned to the control logic variables
 Algorithm blocks: Constituting I/O tags, and parameters in the control loop
 Graphics: Incuding tags that operators must monitor or that engineers use to tune the system performance

- Information Location
 In general, those information stored in a dedicated database.
 It can be accessed through EWS, historian (HSR), and OPC.
Graph generation

Identifying nodes

<table>
<thead>
<tr>
<th>Node type</th>
<th>Digital subsystem I/O</th>
<th>Physical subsystem I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SP</td>
<td>CP</td>
</tr>
<tr>
<td>Target node</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Covert node</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial node</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

Connectiong edges

Connectivity between digital subsystems
- The algorithm block using CP as the input is connected to the EWS node
- The algorithm block using SP including operation mode (auto/manual, system on/off) is connected to the HMI node

Connectivity between digital and physical subsystems
- the physical connection between the controller and the field device corresponds to the algorithm block using PV and CO
- PV also corresponds to data flow through the logical connection between the HMI and field devices
Graph generation

Example of connectivity between subsystems

- Digital subsystem
- Physical subsystem
Case I: Graph Generation of Boiler Control System

- Graph for boiler control system and especially represented for one of control loops (P1-TC)
Case I: Graph Generation of Boiler Control System

- Graph for boiler control system and especially represented for one of control loops (P1-TC)

1. The measured values from the FT02 and TIT01 transmitters on the physical subsystem were obtained through a calibration process (1003.1, 1003.2, 1003.3, 1003.6, 1003.8, and 1003.9) to compensate for the nonlinear distortion of the sensor.

2. The heat transfer cascade control was sequentially composed of a temperature control PID node (1003.25) and a flow rate control PID node (1003.26).
Case II: Normal and Attack Scenario Generation

- All paths based on reachability can be identified and configured to generate attack scenario

1. For normal and attack scenario, we assumed operator or attacker manipulate SP for FCV01 or FCV02. By reachability analysis, this scenario is acceptable because there is the path from initial node (HMI) to target node (FCV01 or FCV02).

2. For attack scenario, we assumed attacker manipulate PV for FT01 not to recognized attack. By reachability analysis, this scenario is acceptable because there is the path from initial node (FT01) to target node (HMI).
Case III: Attack Impact and Root Cause Analysis

All paths based on reachability can be identified and configured to generate attack scenario.

1. When HMI is compromised by attacker, attack impact can be identified with attack propagation chain.

2. When backward analysis in the graph, we can provide root-cause information. (e.g. FCV02 Root-cause)

Digital subsystem
Algorithm block
Physical subsystem
Data flow
Tracking data flow
Development of a dataset of which all control process of the HAI testbed are covered with:

1) Using the proposed method to generate DFG for identify control process
2) then generate data at the HAI testbed as well as informative label for a dataset
The picture can't be displayed.

Q & A

sochoi@nsr.re.kr